

ML4064-LB2-224 Technical Reference

OSFP Electrical Passive Loopback Module CMIS 5.2 Compliant

multilaneinc.com

Table of Contents

1.	Gene	eral Description	4
2.	Orde	ering Information	4
	2.1	Ordering options	4
3.	Func	tional Description	5
	3.1 3.1.1 3.1.2 3.1.3	I2C Signals, Addressing and Frame Structure I2C Frame Management Timing Parameters Device Addressing and Operation	5 5 5
	3.2 3.2.1 3.2.2	I2C Read/Write Functionality OSFP Memory Address Counter (Read and Write Operations) Read Operations	7 7
	3.3	Password Protected Space	8
	3.4 3.4.1 3.4.2 3.4.3	OSFP Memory Map ML4064-LB2-224 Memory Map Memory Accessibility Memory Content	9 9 0
	3.5 3.5.1 3.5.2	Low Speed Electrical Hardware Pins	4 4
	3.6	ML4064-LB2-224 Specific Functions	5
	3.6.1 3.6.2	Module State1 Module State Transition	5
	3.6.3 3.6.4	Module Global Controls	5
	3.6.5 3.6.6	Temperature sense	6 7
	3.6.7 3.6.8	Current Sense	7 8 0
	3.6.9 3.6.10 3.6.11	Low speed signals Pin status 1 J IntL Control 1 True Insertion Counter 1 1	9
	3.6.12 3.6.13	 Maximum Power Indicator	9 0
4.	CDB	Firmware Upgrade	0
5.	High	Speed Signals2	1
	5.1	ML4064-LB2-224 Insertion loss graph2	1
6.	OSFF	P Pin Allocation	2
7.	Mec	hanical Dimensions	3

ML4064-LB2-224 OSFP 8x224G Passive Loopback Module - Key Features

- ✓ Loops back TX & RX with good performance SI Traces
- ✓ Built with advanced PCB Material
- ✓ MSA Compliant Shell with latching mechanism
- ✓ Can dissipate up to 45W
- ✓ I2C Terminated by microcontroller, I2C slave compliant with CMIS
- ✓ Implements CMIS Memory Map with programmable new pages
- ✓ Ability to control/ monitor all low-speed signals
- ✓ Four temperature sensors (2 through-hole and 2 SMT)
- \checkmark Two Inrush and Current sensors are used to cover the power needed
- ✓ Two Voltage sensors on the 3.3V (one for each inrush sensor)
- ✓ True Insertion Counter
- ✓ Available in Type2 IHS and RHS shells
- ✓ Hot Pluggable
- ✓ Cut-off temperature preventing module overheating
- ✓ AC-coupled High-Speed Interface

LED Indicator

Green (Solid) – Signifies that the module is operating in high power mode.

Red (Solid) – Signifies the module is operating in low power mode.

Green (Blinking) – Module in high power mode and Voltage or Temperature Alarm is triggered. **Red (Blinking)** – Module in Low power mode and Voltage or Temperature Alarm is triggered.

Recommended Operating Conditions

Parameter	Symbol	Notes/Conditions	Min	Туре	Max	Units
Operating Temperature	Τ _Α		0		85	°C
Supply Voltage	VCC	Main Supply Voltage	2.97	3.3	3.63	V
Input/output Load Resistance	RL	AC-Coupled, Differential	90	100	110	Ω
Power Class		Programmable to Emulate all power classes	0		45	W
Data Rate	Rb	Guaranteed to work at 224Gbps per lane			1600	Gbps

1. General Description

The ML4064-LB2-224 is an OSFP passive electrical loopback module which is a hot pluggable form factor designed for high-speed testing application for OSFP host ports. The ML4064-LB2-224 is designed for 1.6 Terabits Ethernet applications and provides 8x224G RX and TX lanes, I2C module management interface and all the OSFP hardware signals.

The ML4064-LB2-224 loops back 8-lane 224 Gbps transmit data from the Host back to 8-lane 224Gbps receive data port to the Host.

The ML4064-LB2-224 provides programmable power dissipation up to 45W allowing the module to emulate all the OSFP power classes. It also provides an insertion counter, a LED blinking rate, an upper temperature cut-off and a temperature sensor.

2. Ordering Information

2.1 Ordering options

The ordering options of the ML4064-LB2-224 are detailed in the table below:

Option	Part Number	Description
#1 – IHS	ML4064-LB2I-224	OSFP IHS shell option
#2 – RHS	ML4064-LB2R-224	OSFP RHS shell option

3. Functional Description

3.1 I2C Signals, Addressing and Frame Structure

3.1.1 I2C Frame

Figure 1: OSFP Timing Diagram

3.1.2 Management Timing Parameters

The timing parameters for the 2-Wire interface to the OSFP module are shown in the table below:

Parameter	Symbol	Min	Max	Unit
Clock Frequency	f_{SCL}		400	kHz
Clock Pulse Width Low	t _{LOW}	1.2		us
Clock Pulse Width High	t_{High}	1.1		us
Time bus free before new transmission can start	t _{BUF}	20.8		US
Input Rise Time (400kHz)	T _{R,400}		300	ns
Input Fall Time (400kHz)	T _{F,400}		300	ns
Serial Interface Clock HoldOff (Clock Stretching)	T_Clock_hold		500	us

Maximum time the OSFP Module may hold the SCL line low before continuing with a read or write operation is 500us.

3.1.3 Device Addressing and Operation

Serial Clock (SCL): The host supplied SCL input to OSFP transceivers is used to positive-edge clock data into each OSFP device and negative-edge clock data out of each device.

Serial Data (SDA): The SDA pin is bi-directional for serial data transfer. This pin is open-drain or open-collector driven.

Master/Slave: OSFP transceivers operate only as slave devices. The host must provide a bus master for SCL and initiate all read/write communication.

Device Address: Each OSFP is hard wired at the device address A0h.

Clock and Data Transitions: The SDA pin is normally pulled high with an external device. Data on the SDA pin may change only during SCL low time periods. Data changes during SCL high periods indicating a START or STOP condition. All addresses and data words are serially transmitted to and from the OSFP in 8-bit words. Every byte on the SDA line must be 8-bits long. Data is transferred with the most significant bit (MSB) first.

START Condition: A high-to-low transition of SDA with SCL high is a START condition, which must precede any other command.

STOP Condition: A low-to-high transition of SDA with SCL high is a STOP condition.

Acknowledge: After sending each 8-bit word, the transmitter releases the SDA line for one-bit time, during which the receiver is allowed to pull SDA low (zero) to acknowledge (ACK) that it has received each word. Device address bytes and write data bytes initiated by the host are acknowledged by OSFP transceivers. Read data bytes transmitted by OSFP transceivers should be acknowledged by the host for all but the final byte read, for which the host should respond with a STOP instead of an ACK.

Memory (Management Interface) Reset: After an interruption in protocol, power loss or system reset the OSFP management interface can be reset. Memory reset is intended only to reset the OSFP transceiver management interface (to correct a hung bus). No other transceiver functionality is implied.

- 1. Clock up to 9 cycles
- 2. Look for SDA high in each cycle while SCL is high
- 3. Create a Start condition as SDA is high

Device Addressing: OSFP devices require an 8-bit device address word following a start condition to enable a read or write operation. The device address word consists of a mandatory sequence for the first seven most significant bits in Figure 1. This is common to all OSFP devices.

Figure 2: OSFP Device Address

The eighth bit of the device address is the read/write operating select bit. A read operation is initiated if this bit is set high and a write operation is initiated if this bit is set low. Upon compare of the device address the OSFP transceiver output a zero (ACK) on the SDA line to acknowledge the address.

3.2 I2C Read/Write Functionality

3.2.1 OSFP Memory Address Counter (Read and Write Operations)

OSFP devices maintain an internal data word address counter containing the last address accessed during the latest read or write operation, incremented by one. The address counter is incremented whenever a data word is received or sent by the module. This address stays valid between operations as long as OSFP power is maintained. The address "roll over" during read and writes operations is from the last byte of the 128-byte memory page to the first byte of the same page.

3.2.2 Read Operations

A. Current Address Read

A current address read operation requires only the device address read word (10100001) be sent, see Figure 2 below.

Figure 3: OSFP Current Address Read Operation

Once acknowledged by the OSFP, the current address data word is serially clocked out. The host does not respond with an acknowledgement, but does generate a STOP condition once the data word is read.

B. Random Read

A random read operation requires a "dummy" write operation to load in the target byte address as shown in Figure 3 below. This is accomplished by the following sequence.

		<-	-00	OFT S	10L	NO	D -	->			<	BYT	E 0	FFS	ET /	ADDI	RES:	>			<-	00	NTR	OL	WOR	D -	->												
M A S T E R	5 7 4 8 7	M S B						LSB	W R I T E		M S B							LSB		S T A R T	M S B						L S B	R E A D										N A C K	S T O P
		1	0	1	0	0	0	0	0	0	x	x	x	x	x	x	x	x	0		1	0	1	0	0	0	0	1	0	x	×	×	×	×	x	x	×	1	
SLAVE										A C K									A C K										A C K	M S B							L S B		
	< DATA WORD n>																																						
																	E: a		~ /			De			Dee	ام													

Figure 4: OSFP Random Read

The target 8-bit data word address is sent following the device address write word (10100000) and acknowledged by the OSFP. The host then generates another START condition (aborting the dummy write without incrementing the counter) and a current

address read by sending a device read address (10100001). The OSFP acknowledges the device address and serially clocks out the requested data word. The host does not respond with an acknowledgement, but does generate a STOP condition once the data word is read.

C. Sequential Read

Sequential reads are initiated by a current address read (Figure 4). To specify a sequential read, the host responds with an acknowledgement (instead of a STOP) after each data word. As long as the OSFP receives an acknowledgement, it will serially clock out sequential data words.

The sequence is terminated when the host responds with a NACK and a STOP instead of an acknowledgement.

Figure 5: Sequential Address Read Starting at OSFP Current Address

3.3 Password Protected Space

The memory space protected by password is RO, and can be written after successful password entry.

Password should be entered in Registers 122 to 125 (4 bytes) in low memory. The default password is (in hex): 00 00 10 11.

The password can be changed in Registers 118 to 121.

Address	Bits	Name	Description	Туре
118 – 121	7-0	Password Change Entry Area		WO
122 – 125	7-0	Password Entry Area		WO

The registers protected by Password are listed in the following table:

Page	Address	Description					
	0-2	ID and Status Area					
Low Memory	85-90	Application advertisement Password Change					
	118-121						
	128-200	Identifier Vendor information					
Page 00	202-212	Vendor Information Date code Module power characteristics					

Page 01	176	Advertisement
Page 02	128-143	Alarm thresholds

3.4 OSFP Memory Map

3.4.1 ML4064-LB2-224 Memory Map

Figure 6: Implemented Memory

3.4.2 Memory Accessibility

The Memory Map registers types are shown in the table below:

Page Address	Address Range	Туре
	0-25	RO
	26	RW (VR)
Lower Page	27-126	RO
	127	RW (VR)
	128-165	RO
Page 00h	166-181	RW (NVR)
	182-255	RO
Page 01h	128-255	RO
Page 02h	128-255	RO
	128-224	RW (NVR)
	225-246	RO
Page 03	247-253	RW (NVR)
LOWEI Fage	254	RW(VR)
	255	RW(VR)

3.4.3 Memory Content

The table below shows the memory content.

Page	Address	Hex	ASCII	CMIS Description	Туре	
	0	0x19		SFF8024Identifier	RO	
	1	0x52		CMIS Revision	RO	
	2	0x04		MemoryModel, SteppedConfigOnly and i2c speed	RO	
	3	0x07		Global Status Information	RO	
	4-7	0		NA	RO	
	8	0		State machine change flag indicator	RO	
	9	0		Vcc, Temp Alarm and warning	RO	
	10	0		NA	RO	
	11	0		custom monitor alarm and threshold	RO	
	12	0		reserved	RO	
	13	0		custom	RO	
	14	0		TempMonValue MSB	RO	
	15	0		TempMonValue LSB	RO	
	16	0		VccMonValue MSB	RO	
	17	0		VccMonValue LSB	RO	
	18	0		Aux1MonValue MSB	RO	
	19	0		Aux1MonValue LSB	RO	
	20-23	0		NA	RO	
	24	0		CustomMonValue MSB	RO	
Low	25	0		CustomMonValue LSB	RO	
Memory	26	0x40		Module Global Controls	RW VR	
	27	0		reserved	RO	
	28	0		reserved	RO	
	29	0		custom	RO	
	30	0		custom	RO	
	31-34	0		NA	RO	
	35	0		reserved	RO	
	36	0		custom	RO	
	37	0		NA	RO	
	38	0		NA	RO	
	39	1		ModuleActiveFirmwareMajorRevision	RO	
	40	0		ModuleActiveFirmwareMinorRevision	RO	
	41	0		NA	RO	
	42-63	0		reserved	RO	
	64-84	0		custom	RO	
	85 0x03 MediaType					
	86	0x80		HostInterfaceID	RO	
	87	OxBF		MediaInterfaceID	RO	
	88	0x88		HostLaneCount and MediaLaneCount	RO	
	89	0x01		HostLaneAssignmentOptions	RO	
	90	0xFF		end of application	RO	

multiLane	
-----------	--

	91-126	0		NA	RO			
	127	0		PageSelect	RW VR			
	128	0x19		SFF8024IdentifierCopy	RO			
	129	0x4D	Μ		RO			
	130	0x55	U		RO			
	131	0x4c	L		RO			
	132	0x54	Т		RO			
	133	0x49	I		RO			
	134	0x4c	L		RO			
	135	0x41	А		RO			
	136	0x4e	Ν	VandarNama	RO			
	137	0x45	Е	vendorivarne	RO			
	138	0x20			RO			
	139	0x20			RO			
	140	0x20			RO			
	141	0x20			RO			
	142	0x20			RO			
	143	0x20			RO			
	144	0x20			RO			
	145	0			RO			
	146	0		Vendor OUI	RO			
	147	0			RO			
	148	0x34	4		RO			
PAGE 00	149	0x30	0		RO			
	150	0x36	6		RO			
	151	0x34	4		RO			
	152	0x4c	L		RO			
	153	0x42	В		RO			
	154	0x32	2		RO			
	155	0x2d	1	VendorPN	RO			
	156	0x32	-	Vendon IV	RO			
	157	0x32	2		RO			
	158	0x34	2		RO			
	159	0x20	4		RO			
	160	0x20			RO			
	161	0x20			RO			
	162	0x20			RO			
	163	0x20			RO			
	164	0x31	1	VendorBey	RO			
	165	0x30	0	vendornev	RO			
	166-181	0x20		VendorSN	RW NVR			
	182	0x32			RO			
	183	0x35			RO			
	184	0x30		DateCode				
	185	0x33			RO			
	186	0x30			RO			

	187	0x34		RO
	188	0x30		RO
	189	0x31		RO
	190-199	0	CLEICode	RO
_	200	0xE0	ModulePowerClass	RO
	201	0xB4	MaxPower	RO
	202	0x00	Cable Assembly Link Length	RO
	203	0x00	ConnectorType	RO
	204	0x00	AttenuationAt5GHz	RO
	205	0x00	AttenuationAt7GHz	RO
	206	0x00	AttenuationAt12p9GHz	RO
	207	0x00	AttenuationAt25p8GHz	RO
	208	0x00	reserved	RO
	209	0x00	reserved	RO
	210	0x00	Media Lane Information	RO
	211	0x00	Cable Assembly Information	RO
	212	0x08	MediaInterfaceTechnology	RO
	213-220	0x00	reserved	RO
	221	0x00	custom	RO
	222	0x91	PageChecksum	RO
	223-255	0x00	custom information	RO
	128	0	ModuleInactiveFirmwareMajorRevision	RO
	129	0	ModuleInactiveFirmwareMinorRevision	RO
	130	0x01	ModuleHardwareMajorRevision	RO
	131	0x01	ModuleHardwareMinorRevision	RO
	132-141	0	NA	RO
	142	0x04	Supported Pages Advertising	RO
	143	0x00	ModSelWaitTime	RO
	144	0x00	MaxDurationDPDeinit and MaxDurationDPInit	RO
	145	0x00	Module Characteristics Advertising	RO
	146	0x55	ModuleTempMax	RO
	147	0xd8	ModuleTempMin	RO
PAGE 01	148	0	NA	RO
	149	0	NA	RO
	150	0x87	OperatingVoltageMin	RO
	151	0	NA	RO
	152	0	NA	RO
	153	0	RxOutputLevel Supported and TxInputEqMax	RO
	154	0	RxOutputEqPostCursorMax and RxOutputEqPreCursorMax	RO
	155	0	Media side Supported Controls Advertisement	RO
	156	0	Host side Supported Controls Advertisement	RO
	157	0	NA	RO
	158	0	CDRLOLFlagRxSupported LOSFlagRxSupported	RO

	159	0x27	Supported Monitors Advertisement	RO
	160	0	NA	RO
	161	0	TxInput Eq Supports	RO
	162	0	pre post amplitude supported	RO
	163	0x57	CDB Advertisement	RO
	164	OxFF	CdbReadWriteLengthExtension	RO
	165	0x04	CdbCommandTriggerMethod	RO
	166	0x80	CdbMaxBusySpecMethod	RO
	167	0	MaxDurationModulePwrDn/Up	RO
	168	0	MaxDurationDPTxTurnOff/On	RO
	169-175	0	reserved	RO
	176	0x01	complementary of app sel 1	RO
	177-190	0	NA	RO
	191-222	0	custom	RO
	223-250	0	NA	RO
	251-254	0	reserved	RO
	255	0xCE	check sum of page01	RO
	128	0x50		RO
PAGE 02	129	0	I empMonHighAlarm I hreshold	RO
	130	0		RO
	131	0	TempMonLowAlarmThreshold	RO
	132	0x4B		RO
	133	0	TempMonHighWarningThreshold	RO
	134	0x05		RO
	135	0	TempMonLowWarningThreshold	RO
	136	0x8D		RO
	137	0xCC	VccMonHighAlarmThreshold	RO
PAGE 02	138	0x74		RO
	139	0x04	VccMonLowAlarmThreshold	RO
	140	0x8B		RO
	141	0xD8	VccMonHighWarningThreshold	RO
	142	0x75		RO
	143	0xF8	VccMonLowWarningThreshold	RO
	144-199	0	NA	RO
	200-229	0	reserved	RO
	230-254	0	custom	RO
	255	0X41	Page 2 checksum	RO
	128-224	0	User EEPROM	RW NVR
	225 (PAGE 03)	0	INT/RSTn analog MSB	RO
PAGE 02	226 (PAGE 03)	0	INT/RSTn analog LSB	RO
	227 (PAGE 03)	0	LPWn/PRSn analog MSB	RO
	228 (PAGE 03)	0	LPWn/PRSn analog LSB	RO
	229 (PAGE 03)	0	TempSens 1 MSB	RO
	230 (PAGE 03)	0	TempSens 1 LSB	RO
	231 (PAGE 03)	0	TempSens 2 MSB	RO

multil	ane
--------	-----

232 (PAGE 03)	0	TempSens 2 LSB	RO
233 (PAGE 03)	0	TempSens 3 MSB	RO
234 (PAGE 03)	0	TempSens 3 LSB	RO
235 (PAGE 03)	0	TempSens 4 MSB	RO
236 (PAGE 03)	0	TempSens 4 LSB	RO
237 (PAGE 03)	0	VoltSens 1 MSB	RO
238 (PAGE 03)	0	VoltSens 1 LSB	RO
239 (PAGE 03)	0	VoltSens 2 MSB	RO
240 (PAGE 03)	0	VoltSens 2 LSB	RO
241 (PAGE 03)	0	CurrentSens 1 MSB	RO
242 (PAGE 03)	0	CurrentSens 1 LSB	RO
243 (PAGE 03)	0	CurrentSens 2 MSB	RO
244 (PAGE 03)	0	CurrentSens 2 LSB	RO
245 (PAGE 03)	0	true insertion counter MSB	RO
246 (PAGE 03)	0	true insertion counter LSB	RO
247 (PAGE 03)	0	Power Register 1	RW NVR
248 (PAGE 03)	0	Power Register 2	RW NVR
249 (PAGE 03)	0	Power Register 3	RW NVR
250 (PAGE 03)	0	Power Register 4	RW NVR
251 (PAGE 03)	0	Power Register 5	RW NVR
252 (PAGE 03)	0	Power Register 6	RW NVR
253 (PAGE 03)	0x55	temp cutoff	RW NVR
254 (PAGE 03)		Init Mode state	RW VR
255 (PAGE 03)		Digital control of INTL	RW VR

3.5 Low Speed Electrical Hardware Pins

In addition to the 2-wire serial interface the module has the following low speed pins for control and status.

3.5.1 INT/RSTn

INT/RSTn is a dual function signal that allows the module to raise an interrupt to the host and also allows the host to reset the module.

Reset is an active low signal on the host which is translated to an active low signal on the module. Interrupt is an active high signal on the module which gets translated to an active low signal on the host.

3.5.2 LPWn/PRSn

LPWn/PRSn is a dual function signal that allows the host to signal Low Power mode and the module to indicate Module Present.

Low Power mode is an active low signal on the host which gets converted to an active low signal on the module.

Module Present is controlled by a pull down resistor on the module which gets converted to an active low logic signal on the host.

3.6 ML4064-LB2-224 Specific Functions

3.6.1 Module State

The Module State describes module-wide behaviors and properties. The ML4064-LB2-224 implements two module states: ModuleLowPwr and ModuleReady.

The ModuleLowPwr state is a host control state, where the management interface is fully initialized and operational and the Module is in Low Power mode, where the Power Spots are deactivated. During this state, the host may configure the module using the management interface and memory map. The module state encoding for ModuleLowPwr is 001.

The ModuleReady state is a host control state that indicates that the module is in High Power mode, and the PWM is activated. The module state encoding for ModuleReady is 011.

Address	Bit	Name	Description	Туре
3 (lower Page)	3~1	Module State	Current state of Module: 001b= ModuleLowPwr 011b= ModuleReady	RO

3.6.2 Module State Transition

The state transition between Low Power and High Power is related to three parameters:

- 1. ForceLowPwr bit- software control (forces module into low power mode), register 26 bit 4
- 2. LowPwr bit software control, register 26 bit 6
- 3. LPMode Hardware signal

According to these parameters, the state of the module is defined. Conditions for Low Power and High Power state, are summarized in the table below.

ForceLowPwr (Reg 26 bit 4)	LowPwr (register 26 bit 6)	LPMode	State
1	Х	Х	Low Power
0	1	1	Low Power
0	1	0	High Power
0	0	1	High Power
0	0	0	High Power

3.6.3 Module Global Controls

Module global controls are control aspects that are applicable to the entire module on all channels in the module.

Address	Bit	Name	Description	Туре
	6	LowPwr	Parameter used to control the module power mode Default value =1	
26(lower Page)	4	ForceLowPwr	0b = high power mode(default) 1b =Forces module into low power mode	RW
	3	Software Reset	Self-clearing bit that causes the module to be reset. The effect is the same as asserting the reset pin for the appropriate hold time, followed by its de-	

mu	ltiLane	\sim			
				assertion. This bit will be cleared to zero on a reset so a value of 0 will always be returned. 0b = not in reset 1b = Software reset	
	3(lower page)	0	Software Interrupt	Digital state of Interrupt: Ob = Interrupt source is present 1b = No interrupt source present	RO

3.6.4 Voltage Sense

A voltage sense circuit is available allowing the measure of internal module supplied voltage Vcc. Supply voltage is represented as a 16-bit unsigned integer with the voltage defined as the full 16-bit value (0 – 65535) in increments of 100 μ V, yielding a total measurement range of 0 to +6.55 Volts.

Address	Bit	Name	Description	Туре
16	All	Supply voltage MSB	Internally measured supply voltage	PO
17	All	Supply voltage LSB	Internally measured supply voltage	NU

The Voltage alarms and warnings interrupt flags exists in lower page.

Address	Bit	Name	Description	Туре
	7	L-Vcc3.3v Low Warning	Latched low 3.3 volts supply voltage warning flag	
9 (lower	6	L-Vcc3.3v High Warning	Latched low 3.3 volts supply voltage warning flag	RO
Page)	5	L-Vcc3.3v Low Alarm	Latched low 3.3 volts supply voltage alarm flag	
	4	L-Vcc3.3v High Alarm	Latched low 3.3 volts supply voltage alarm flag	

3.6.5 Temperature sense

The ML4064-LB2-224 has 2 temperature sensors on the PCBA to continuously monitor the module temperature. Internally measured Module temperatures are represented as a 16-bit signed two's complement value in increments of 1/256 degrees Celsius, yielding a total range of -127° C to $+128^{\circ}$ C that is considered valid between -40° and $+125^{\circ}$ C.

Address	Bit	Name	Description	Туре
14 Lower Page	All	Temperature Sense 1 MSB	Case Temperature	
15 Lower Page	All	Temperature Sense 1 LSB		PO
18 Lower Page	All	Temperature Sense 2 MSB	Internally measured temperature	κΟ
19 Lower Page	All	Temperature Sense 2 LSB		

The distribution of internal temperature sensors is shown in the figure below.

The temperature alarms and warnings interrupt flags exist in lower page:

Address	Bit	Name	Description	Туре
	3	L-Temp Low Warning	Latched low temperature warning flag	
9 (lower Page)	2	L-Temp High Warning	Latched high temperature warning flag	RO
		L-Temp Low Alarm	Latched low temperature alarm flag	
	0	L-Temp High Alarm	Latched high temperature alarm flag	

Note that any interrupt flag when asserted will generate the interrupt. Its state is read from register 3 bit 0.

3.6.6 Cut-Off Temperature

To avoid overheating the module, a Cut-Off Temperature is pre-defined.

The module is continuously monitoring the temperature and checking its value against the Cut-Off temperature. Once the module temperature reaches the cut-off temperature, the PWM will automatically turn off in order to prevent overheating. Once the temperature is 5 degrees below cut-off value, the PWM goes back to its previous value.

The maximum Cut-Off temperature for the **ML4064-LB2-224** is 100°C and it can be programmed to any value from register 253 of memory page 03. It's default value is 100°C.

Address	Bit	Name	Description	Туре
253	7:0	Cut-Off temperature	Module Cut-Off Temperature, LSB = 1 degC	RW (NVR)

3.6.7 Current Sense

A current sense circuit is available in the ML4064-LB2-224 that allows monitoring the current consumption of the heaters that are distributed over six power spots. The current sense is able to measure up to 12 Amps. Current is stored on page 03 registers 241-242 and 243-244, and combined current sense is stored in low memory registers 24 and 25

Address	Bit	Name	Description	Туре
24	All	CustomMonValue MSB		
25	All	CustomMonValue LSB		
241 (page 03)	All	Current Consumption 1 MSB		
242 (page 03)	All	Current Consumption 1 LSB	Current consumption in mA	RO
243 (page 03)	All	Current Consumption 2 MSB		
244 (page 03)	All	Current Consumption 2 MSB		

3.6.8 Programmable Power Dissipation and Thermal Emulation

The consumed power changes accordingly when the value of the power control registers changed (only when in high power mode). In Low power mode the module automatically turns off all power spots. In addition to the programmable power spots. The values written in these registers are permanently stored. The power spots can also be used for module thermal emulation. All registers are in upper page 03.

Register	Bit	Control Type	Description	Default Value	Memory Type
247	7:0	Programmable	Spot 1 at the Top Controlled From 0 to 255	7.5 W	
248	7:0	Programmable	Spot 2 at the Top Controlled From 0 to 255	7.5 W	
249	7:0	Programmable	Spot 3 at the Top Controlled From 0 to 255	7.5 W	
250	7:0	Programmable	Spot 4 at the Top Controlled From 0 to 255	7.5 W	
251	7:0	Programmable	Spot 5 at the Bottom Controlled From 0 to 255	7.5 W	
252	7:0	Programmable	Spot 6 at the Bottom Controlled From 0 to 255	7.5 W	

The power spots distribution is shown in the image below:

Figure 7: Power Spots Distribution

3.6.9 Low Speed Signals Pin Status

The register below is accessed from page 03h.

Register	Page	Bit	Name	Description	Memory Type
		1	LPWn/PRSn	Read 1b: High Read 0b: Low	RO
254	Page 03h	4	LPWn pin state transition	Read 0b: No edge detected Read 1b: Either rising edge or falling edge crossing the 1.25V threshold is detected Write 0b: No effect Write 1b: Clear the register	RW

3.6.10 IntL Control

During power-up of the module, INT is defaulted to negated. Afterward, host can set the status of this indicator to any status through an I2C registers **in upper page 03**. Setting it should not affect any operation in the module.

Address	Bit	Name	Description	Туре
255	1~0	IntL_CNT	Digital Control of INTL: 00: Normal Operation 10: Force the INTL to logic 0 11: Force the INTL to logic 1	RW

For "Normal Operation", the INTL is asserted when the alarm or warning is high (VCC or Temperature) and the LED will start blinking. If the INTL_CNT is set from this register, the LED won't blink.

3.6.11 True Insertion Counter

The true insertion counter contains the number of times the module was plugged in a host. The true insertion counter is incremented every time the module goes in initializing sequence, as it is nonvolatile it is always saved. The true insertion counter can be read from registers 245 and 246 page03.

Address	Page	Name	Description	Туре
245	Page 03h	True Insertion Counter MSB		RO
246	1 486 0011	True Insertion Counter LSB	LSB unit = 1 insertion	

3.6.12 Maximum Power Indicator

The maximum power in the module is indicated by reading register 201 of Page 00. The value of this register is the maximum power consumption in multiples of 0.25 W rounded up to the next whole multiple of 0.25 W.

Address	Page	Bit	Name	Description	Default	Туре
201	Page 00h	All	Max Power Indicator	Module Maximum Power Consumption	In decimal: 180 Corresponding to 45W	RO

3.6.13 Alarm and warning thresholds

Each A/D quantity has a corresponding high alarm, low alarm, high warning and low warning threshold. These factory-preset values allow the user to determine when a particular value is exceeding the predefined limit. While Voltage LSB unit is 100 μ V and Temperature LSB unit is 1/256 °C.

Address	Page	Bit	Name	Default Value (DEC)	Default Value (HEX)	Туре
128		ALL	high temp alarm threshold (MSB)	80° C	0x50	
129		ALL	high temp alarm threshold (LSB)		0x00	
130		ALL	low temp alarm threshold (MSB)	0° C	0x00	
131		ALL	low temp alarm threshold (LSB)	0.0	0x00	-
132		ALL	high temp warning threshold (MSB)	75° C	0x4B	
133		ALL	high temp warning threshold (LSB)	75 0	0x00	
134		ALL	low temp warning threshold (MSB)	ຮີດ	0x05	
135	Page	ALL	low temp warning threshold (LSB)	5.0	0x00	RO
136	02h	ALL	high volt alarm threshold (MSB)	3 63 V	0x8D	. NO
137		ALL	high volt alarm threshold (LSB)	3.03 V	0xCC	
138		ALL	low volt alarm threshold (MSB)	2 97 V	0x74	
139		ALL	low volt alarm threshold (LSB)	2.57 V	0x04	
140		ALL	high volt warning threshold (MSB)	3 58 V	0x8B	
141		ALL	high volt warning threshold (LSB)	5.50 V	0xD8	
142		ALL	low volt warning threshold (MSB)	3 02 V	0x75	
143		ALL	low volt warning threshold (LSB)	5.02 V	0xF8	

4. CDB Firmware Upgrade

The generic CDB based firmware update facilities allow hosts to update the module firmware completely in a vendor supported depth and granularity.

The module advertises in page 01h for single CDB instance with autopaging supported with maximum EPL pages of 16 (A0-AFh). The firmware supports only single image update.

Complete commands supported:

CDB Feature and Capabilities Commands

ID	Command Title
0040h	Module Features advertisement
0041h	Firmware Management Features advertisement
0042h	Performance Monitoring Features advertisement
0043h	BERT and Diagnostic Features advertisement

CDB Firmware Management Commands

ID	Command Title
0100h	Get Firmware Info command
0101h	Start Firmware Download command
0104h	Write Firmware Block EPL command
0107h	Complete Firmware Download command
0109h	Run Firmware Image command
010Ah	Commit Firmware Image command

5. High Speed Signals

High speed signals are electrically looped back from TX side to RX side of the module, all differential TX pairs are connected to the corresponding RX pairs (straight Mapping), and the signals are AC coupled as specified by OSFP CMIS High Speed Electrical specs. The Passive traces connecting TX to RX pairs are designed to support a data rate up to 224Gbps.

5.1 ML4064-LB2-224 Insertion loss graph

The graph below shows the insertion loss simulated data of the ML4064-LB2-224, for all eight channels.

6. **OSFP Pin Allocation**

Figure 8: OSFP Module Pad Layout

7. Mechanical Dimensions

Figure 9: ML4064-LB2I-224

Innovation for the next generation

Revision History

Revision number	Date	Description
0.1	3/10/2025	 Preliminary
		 Added 2 pictures in the cover page
		 Adjusted the Memory map table on section 3.4.3
0.2	3/28/2025	 Adjusted picture ratio on section 3.6.5
		 Updated section 3.6.6
		 Adjusted pictures on section 3.6.8
0.0	4/2/2025	 Updated section 3.6.5
0.3		 Updated section 3.6.8
0.4	4/15/2025	Updated section 3.4.3 by changing the value of Reg 145 page 01.
		 Updated section 2.1 by changing the PN
0.5	5/2/2025	 Updated section 3.4.3 by adjusting the Vendor Rev and PN
		 Updated Section 3.6.6 by adding the default value of the cut-off temp.

multilaneinc.com